

Architecture of the IBM BG/Q Argonne Training Program on Extreme Scale Computing

Scott Parker
Ray Loy
Argonne Leadership Computing Facility
8/03/2015

Argonne Blue Gene Timeline

1999

- IBM begins \$100 million R&D project on Blue Gene architecture
- Initial target was protein folding applications
- Design evolved out of the Cyclops64 and QCDOC architectures

2004:

- Blue Gene/L introduced
- LLNL 90-600 TF system #1 on Top 500 for 3.5 years

2005:

Argonne accepts 1 rack (1024 nodes) of Blue Gene/L (5.6 TF)

2006:

- Argonne Leadership Computing Facility (ALCF) founded
- ANL working with IBM on next generation Blue Gene

2008:

ALCF accepts 40 racks (160k cores) of Blue Gene/P (557 TF)

2009:

- ALCF approved for 10 petaflop system to be delivered in 2012
- ANL working with IBM on next generation Blue Gene

2012:

- 48 racks of Mira Blue Gene/Q (10 PF) hardware delivered to ALCF
- Mira in production

Blue Gene in the Top 500

- Since being released 11 years ago, on the Top500 list:
 - A Blue Gene was #1 on half of the lists
 - On average 3 of the top 10 machines have been Blue Gene's
- Blue Gene/Q currently has 4 entries in top 10 of the Top500:
 - #3 LLNL Sequoia, 96k nodes, 20PF
 - #5 ANL Mira, 48k nodes, 10PF
 - #9 Juelich Jugeen, 28k nodes, 5.8 PF
 - #10 LLNL Vulcan, 24k nodes, 5 PF
- BG/P and BG/Q both held #1 on the Green500

Blue Gene DNA

Leadership computing power

Leading architecture since introduction, #1 half Top500 lists over last 10 years

Low speed, low power

- Embedded PowerPC core with custom SIMD floating point extensions
- Low frequency (L 700 MHz, P 850 MHz, Q 1.6 GHz)

Massive parallelism:

- Multi/Many core (L 2, P 4, Q 16)
- Many aggregate cores (L 208k, P 288k, Q 1.5M)

Fast communication network(s)

Low latency, high bandwidth, torus network (L & P – 3D, Q – 5D)

Balance:

Processor, network, and memory speeds are well balanced

Minimal system overhead

Simple lightweight OS (CNK) minimizes noise

Standard Programming Models

- Fortran, C, C++, & Python languages supported
- Provides MPI, OpenMP, and Pthreads parallel programming models

System on a Chip (SoC) & Custom designed Application Specific Integrated Circuit (ASIC)

- All node components on one chip, except for memory
- Reduces system complexity and power, improves price / performance

High Reliability:

Sophisticated RAS (reliability, availability, and serviceability)

Dense packaging

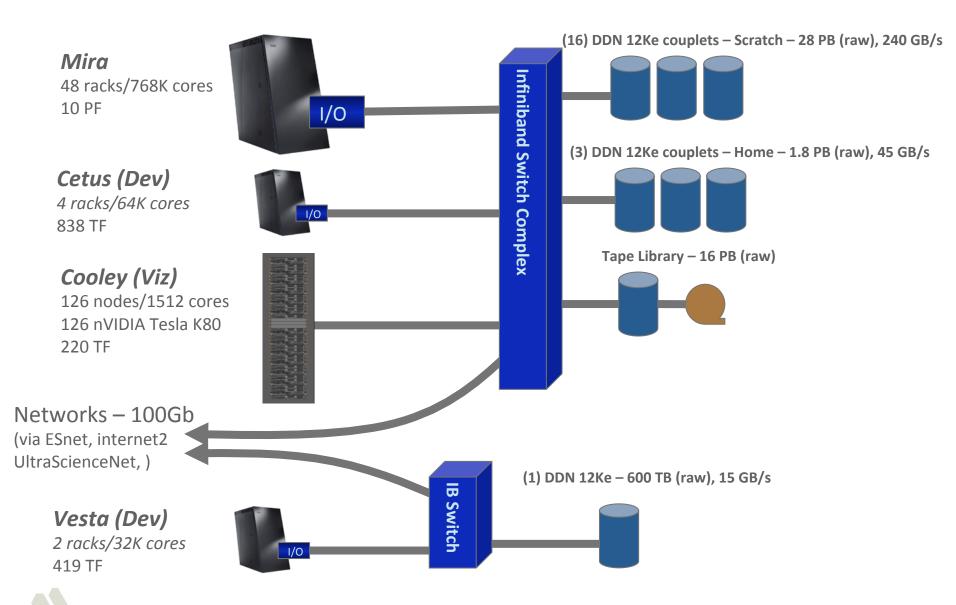
1024 nodes per rack

ALCF and the BG/Q Development

- Over a three year period ANL collaborated with LLNL and IBM in joint research and development for the Blue Gene/Q providing input on design directions
- ANL and LLNL reviewed and provided feedback on several dozen technical milestone documents related to the design of the Blue Gene/Q:
 - "BG/Q Design Trade-Off Study"
 - "BG/Q Core Choice Review"
 - "BG/Q Messaging Software Review"
 - "BG/Q Compute Node Kernel"
 - "API for Prefetcher"
 - ...
- Monthly conference calls to discuss BG/Q design aspects
- Quarterly on-site review meetings to review status and progress
- ANL & LLNL Statement-of-Work contracts specifying in detail the system specifications and deliverables
- Provided representative application benchmarks
- Provided IBM access to Intrepid and Mira for software development and testing at scale

Evolution from P to Q

Design Parameters	BG/P	BG/Q	Difference
Cores / Node	4	16	4x
Hardware Threads	I	4	4x
Concurrency / Rack	4,096	65,536	l6x
Clock Speed (GHz)	0.85	1.6	1.9x
Flop / Clock / Core	4	8	2x
Flop / Node (GF)	13.6	204.8	15x
RAM / core (GB)	0.5	I	2x
Mem. BW/Node (GB/sec)	13.6	42.6	3x
Latency (MPI zero-length, nearest-neighbor node)	2.6 μs	2.2 μs	~15% less
Bisection BW (32 racks)	1.39TB/s	I3.ITB/s	9.42x
Network	3D Torus + Collectives	5D Torus	Smaller diameter
GFlops/Watt	0.77	2.10	3x
Instruction Set	32 bit PowerPC + DH	64 bit PowerPC + QPX	New vector instructions
Programming Models	MPI + OpenMP	MPI + OpenMP	
Cooling	Air	Water	



Mira Science Applications

BG/P version as-is on BG/Q

Apps	BQ/P Ratio	Comments
DNS3D	11.8	2048^3 grid, 16K cores, 64 ranks/node
FLASH	5.5 (<mark>9.1</mark>)	rtflame, 2K cores, 64 ranks/node rtflame, 16K cores, 8 ranks/node, 8 threads/rank, no MPI-IO
GFMC	10.5	c12-test, 2K cores, 8 ranks/node, 8 thrds/rank
GTC	10.8	M0720, 16K cores, 16 ranks/node, 4 thrds/rank
GFDL	11.9	Atm, 2K cores, 16 ranks/node, 4 thrds/rank
MILC	6.1	32^3x64 lattice, 2K cores, 64 ranks/node, no QPX
NEK	8.5	med case, 1K cores, 32 ranks/node, no QPX
NAMD	9.7	ATPase bmk, 2K cores, 16 ranks/node
GPAW	7.6	Au_bulk5x5x5, 2K cores, 16 ranks/node
LS3DF	8.1	ZnOTe, 8K cores, ESSLsmp, I/O sensitive

ALCF BG/Q Systems

Blue Gene/Q Components

Compute Node:

- Processor:
 - 18 cores (205 GF)
 - Memory Controller
 - Network Interface
- Memory:
 - 16 GB DDR3
 - 72 SDRAMs, soldered
- Network connectors

Node Card Assembly or Tray

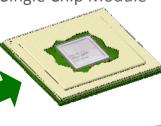
- 32 Compute Nodes (6.4 TF)
- Electrical network
- Fiber optic modules and link chips
- Water cooling lines
- Power supplies

Redundant, Hot-Pluggable

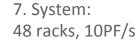
Rack

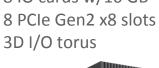
- 32 Node Trays (1024 nodes) (205 TF)
- 5D Torus Network (4x4x4x8x2)
- 8 IO nodes
- Power Supplies

Blue Gene/Q

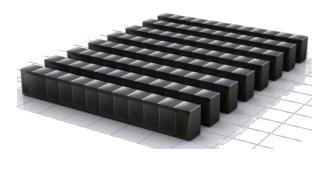

3. Compute card: One chip module, 16 GB DDR3 Memory, Heat Spreader for H₂O Cooling

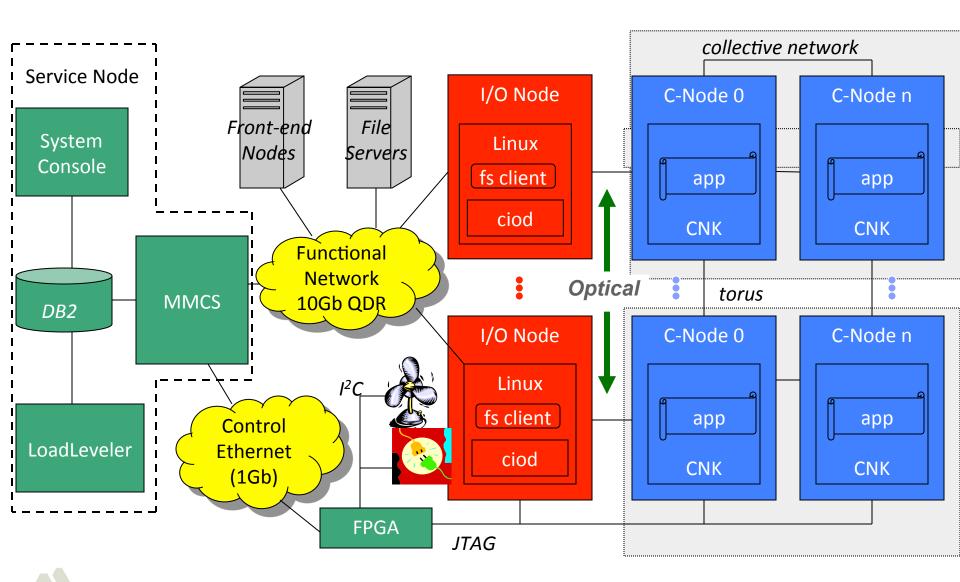
4. Node Card: 32 Compute Cards, Optical Modules, Link Chips; 5D Torus

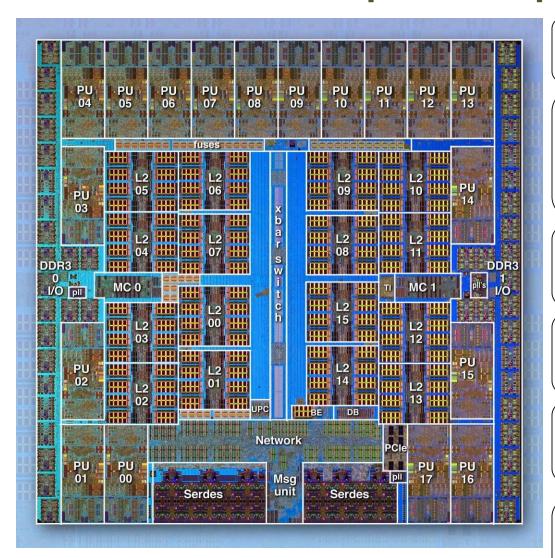

2. Single Chip Module


1. Chip: 16+2 cores

5b. IO drawer: 8 IO cards w/16 GB 3D I/O torus







Blue Gene System Architecture

Questions?

BlueGene/Q Compute Chip

It's big!

- 360 mm² Cu-45 technology (SOI)
- ~ 1.47 B transistors

18 Cores

- 16 compute cores
- 17th core for system functions (OS, RAS)
- plus 1 redundant processor
- L1 I/D cache = 16kB/16kB

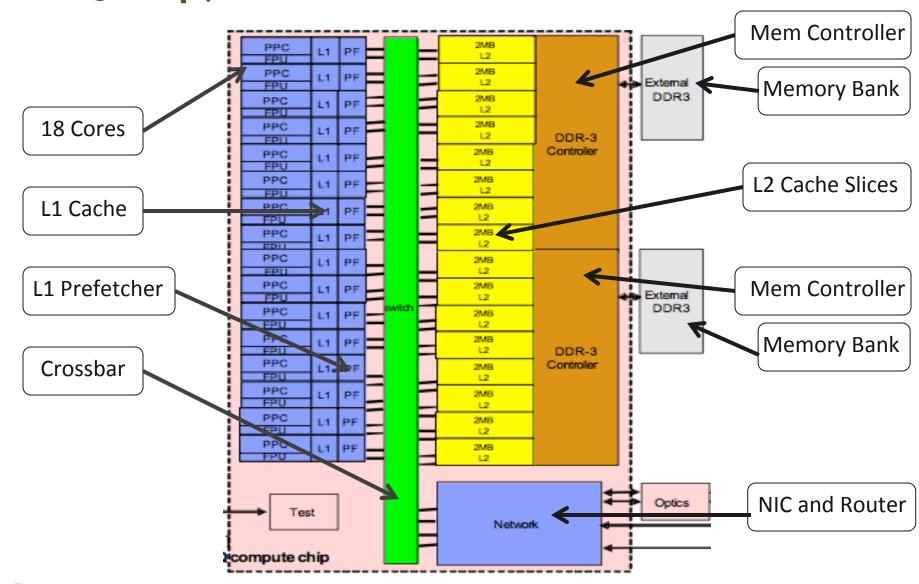
Crossbar switch

- Each core connected to shared L2
- Aggregate read rate of 409.6 GB/s

Central shared L2 cache

- 32 MB eDRAM
- 16 slices

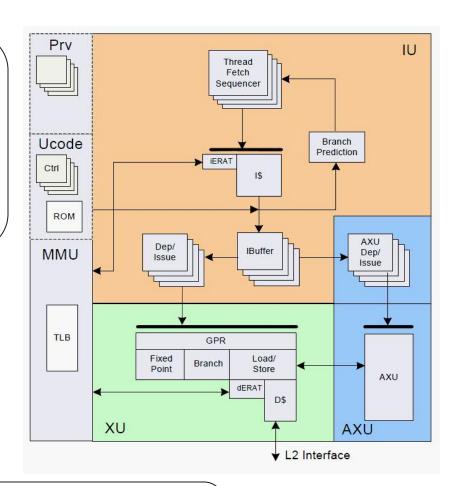
Dual memory controller


- 16 GB external DDR3 memory
- 42.6 GB/s bandwidth

On Chip Networking

- Router logic integrated into BQC chip
- DMA, remote put/get, collective operations
- 11 network ports

BG/Q Chip, Another View

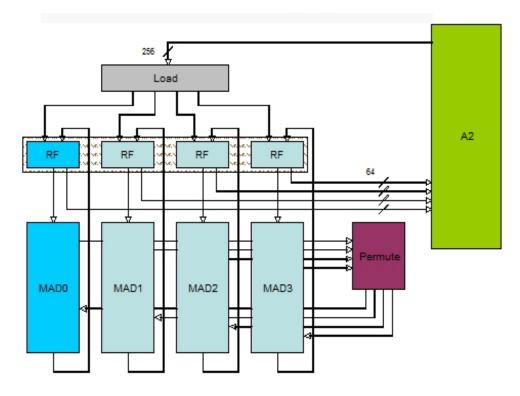


BG/Q Core

- Full PowerPC compliant 64-bit CPU, PowerISA v.206
 - Plus QPX floating point vector instructions
- Runs at 1.6 GHz
- In-order execution
- 4-way Simultaneous Multi-Threading
- Registers: 32 64-bit integer, 32 256-bit floating point

Functional Units:

- IU instructions fetch and decode
- XU Branch, Integer, Load/Store instructions
- AXU Floating point instructions
 - Standard PowerPC instructions
 - QPX 4 wide SIMD
- MMU memory management (TLB)


Instruction Issue:

- 2-way concurrent issue 1 XU + 1 AXU
- A given thread may only issue 1 instruction per cycle
- Two threads may issue 1 instruction each cycle

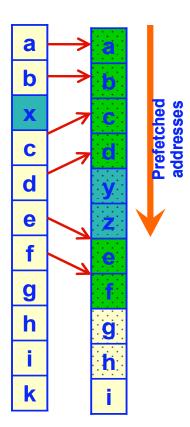


QPX Overview

- Unique 4 wide double precision SIMD instructions extending standard PowerISA with:
 - Full set of arithmetic functions
 - Load/store instructions
 - Permute instructions to reorganize data
- 4 wide FMA instructions allow 8 flops/inst
- FPU operates on:
 - Standard scale PowerPC FP instructions
 - 4 wide SIMD instructions
 - 2 wide complex arithmetic SIMD arithmetic
- Standard 64 bit floating point registers are extended to 256 bits
- Attached to AXU port of A2 core
- A2 issues one instruction/cycle to AXU
- 6 stage pipeline
- Compiler can generate QPX instructions
- Intrinsic functions mapping to QPX instructions allow easy QPX programming

L1 Cache & Prefetcher

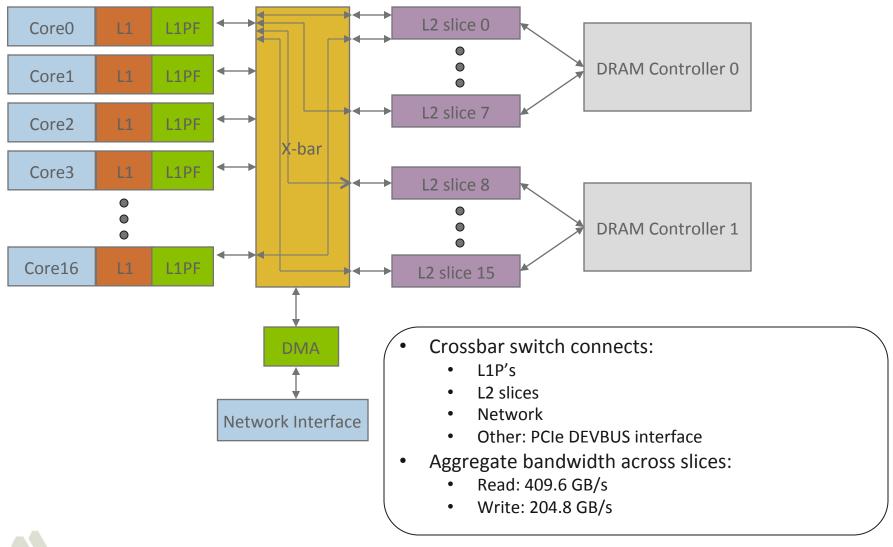
- Each Core has it's own L1 cache and L1 Prefetcher
- L1 Cache:
 - Data: 16KB, 8 way set associative, 64 byte line, 6 cycle latency
 - Instruction: 16KB, 4 way set associative, 3 cycle latency
- L1 Prefetcher (L1P):
 - 1 prefetch unit for each core
 - 32 entry prefetch buffer, entries are 128 bytes, 24 cycle latency
 - Operates in List or Stream prefetch modes
 - Operates as write-back buffer


L1 Prefetcher

- Each core has a prefetch unit that attempts to reduce the latency for L1 misses
- Prefetch buffer holds 32 128 byte cache lines
- Stream Prefetching:
 - Default mode
 - Attempts to identify sequences of increasing contiguous loads based on L1 misses and prefetch data for upcoming loads
 - Adaptively adapts prefetch depth from 16 streams x 2 deep to 4 streams x 8 deep

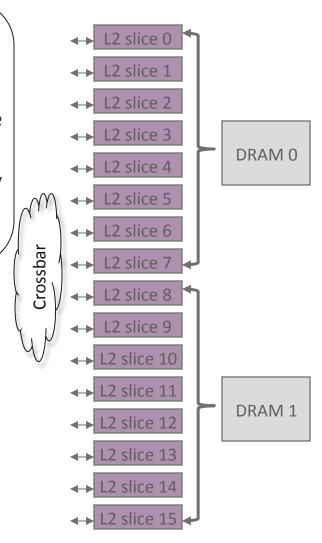
List Prefetching:

- 4 units per core, 1 per hardware thread
- Allows prefetching of arbitrary memory access patterns accessed repeatedly
- Activated by program directives bracketing sections of code
- Record pattern on first loop iteration and playback for subsequent iterations
- List is adaptively adjusted for missing or extra cache misses


L1 miss List address address

List-based "perfect" prefetching has tolerance for missing or extra cache misses

BG/Q Crossbar Switch

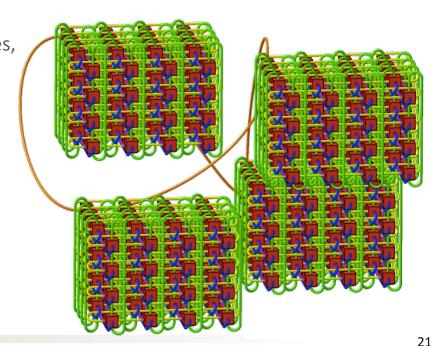

L2 Cache & Memory

L2 Cache:

- Shared by all cores
- Serves a point of coherency, generates L1 invalidations
- Divided into 16 slices connected via crossbar switch to each core
- 32 MB total, 2 MB per slice
- 16 way set assoc., write-back, LRU replacement, 82 cycle latency
- Supports memory speculation and atomic memory operations
- Has prefetch capabilities based on hints from L1P

Memory:

- Two on-chip memory controllers
- Each connects to 8 L2 slices via 2 ring buses
- Each controller drives a 16+2 byte DDR-3 channel at 1.33 Gb/s
- Peak bandwidth is 42.67 BG/s (excluding ECC)
- Latency > 350 cycles


Inter-Processor Communication

5D torus network:

- -Achieves high nearest neighbor bandwidth while increasing bisectional bandwidth and reducing hops vs 3D torus
- -Allows machine to be partitioned into independent sub machines
 - No impact from concurrently running codes.
- -Hardware assists for collective & barrier functions over COMM WORLD and rectangular sub communicators
- -Half rack (midplane) is 4x4x4x4x2 torus (last dim always 2)

■ No separate Collectives or Barrier network:

- -Single network used for point-to-point, collectives, and barrier operations
- Additional 11th link to IO nodes
- Two type of network links
 - Optical links between midplanes
 - Electrical inside midplane

Network Performance

Nodes have 10 links with 2 GB/s raw bandwidth each

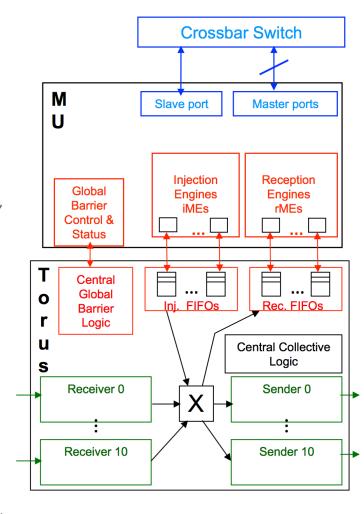
- Bi-directional: send + receive gives 4 GB/s
- 90% of bandwidth (1.8 GB/s) available to user

Hardware latency

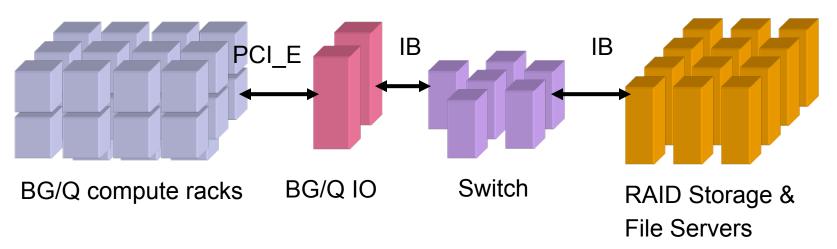
- ~40 ns per hop through network logic
- Nearest: 80ns
- Farthest: 3us (96-rack 20PF system, 31 hops)

Network Performance

- Nearest-neighbor: 98% of peak
- Bisection: > 93% of peak
- All-to-all: 97% of peak
- Collective: FP reductions at 94.6% of peak
- Allreduce hardware latency on 96k nodes ~ 6.5 us
- Barrier hardware latency on 96k nodes ~ 6.3 us


Network Interface and Router

Network Unit (Torus Router)


- Each chip has 11 network send units and 11 receive units:
 - Each can transmit and receive at 2 GB/s simultaneously
 - 10 Torus links, 1 IO link, total bandwidth of 44 GB/S
- 16 hardware network injection & reception FIFOs
 - Packets placed in injection FIFOs are sent out via the Sender
 - Packets received for the node are placed in the reception FIFOs
- Packets from Receivers passing through can go directly to Senders
- Receivers contain 7 Virtual Channel packet buffers: point-to-point, high priority, system, collectives
- Collective operations are handled by Central Collective Logic

Messaging Unit (Network Interface)

- Interface between the network and the BG/Q memory system
 - Injects and pulls packets from network FIFOs
 - Supports direct puts, remote gets, and memory FIFO messages
- Maintains pointers to FIFOs in main memory
 - 544 injection memory FIFOs, 272 memory reception FIFOs
 - Messages sent by writing descriptor into injection FIFO
- 16 Injection Message Engines and 16 Reception Message Engines
 - Injection engines are assigned a descriptor, pull data and packetize
 - Reception engines pull data from reception FIFOs and write to in-memory FIFOs, or specified memory location

BG/Q IO

IO is sent from Compute Nodes to IO Nodes to storage network

- IO Nodes handle function shipped IO calls to parallel file system client
- IO node hardware is functionally identical to compute node hardware
- IO nodes run Linux and mount file system
- "Bridge" Compute Nodes use 1 of the 11 network links to link to IO nodes
- Each IO node connects to 2 bridge nodes (one in each of two compute partitions)
 - Pairs of IO nodes are shared by pairs of compute nodes
 - Only at smallest HW partition size, no sharing between larger partitions.

Blue Gene/Q Software High-Level Goals & Philosophy

- Facilitate extreme scalability
 - Extremely low noise on compute nodes
- High reliability: a corollary of scalability
- Familiar programming modes such as MPI and OpenMP
- Standards-based when possible
- Open source where possible
- Facilitate high performance for unique hardware:
 - Quad FPU, DMA unit, List-based prefetcher
 - TM (Transactional Memory), SE (Speculative Execution)
 - Wakeup-Unit, Scalable Atomic Operations
- Optimize MPI and native messaging performance
- Optimize libraries
- Facilitate new programming models

Blue Gene/Q Software

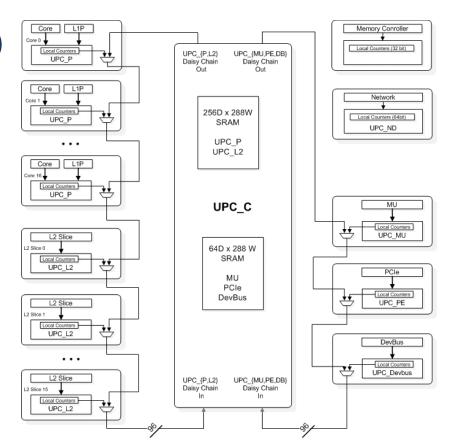
- Standards-based programming environment
 - Linux development environment: familiar GNU toolchain with glibc, pthreads
 - XL Compilers C, C++, Fortran with OpenMP 3.1
 - Debuggers: Totalview
 - Tools: HPC Toolkit, TAU, PAPI, Valgrind
- Message Passing
 - Scalable MPICH2 providing MPI 2.2 with extreme message rate
 - Efficient intermediate (PAMI) and low-level (SPI) message libraries
 - documented and open source
 - PAMI layer allows easy porting of runtimes like GA/ARMCI, Berkeley UPC, etc
- Compute Node Kernel (CNK) eliminates OS noise
 - File I/O offloaded to I/O nodes running full Red Hat Linux
 - GLIBC environment with a few restrictions for scaling
- Flexible and fast job control with high availability
 - Noise-free partitioned networks
 - Integrated HPC, HTC, MPMD, and sub-block jobs

BG/Q Special Features

- 4-wide SIMD floating point unit (QPX)
- Transactional Memory & Speculative Execution
- Fast memory based atomic operations
- Stream and list based prefetching
- WakeUp Unit
- Universal Performance Counters

Fast Atomics

- Provided in hardware by the L2
- 8 byte load & store operations that can alter the value at any memory address
- Atomics use standard load & store instructions with special high order address bits
- Allow fast synchronization and concurrent data structures a ticket lock can by implemented to run 30x faster
- Load Operations:
 - LoadClear, LoadIncrement, LoadDecrement, LoadIncrementBounded, LoadDecrementBounded
- Store Operations:
 - StoreAdd, StoreAddCoherenceOnZero, StoreTwin, StoreOr, StoreXor, StoreMaxUnsigned, StoreMaxSigned
- Memory for Atomics must be reserved with Kernel_L2AtomicsAllocate()



WakeUp Unit

- Each core includes a WakeUp Unit
- Improves overall performance by reducing the cost of spin or polling loops
 - Polling threads issue instructions that occupy issues slots
- Threads can configure the WakeUp unit to watch for writes to a range of memory addresses
- Threads can be suspended until a watched address is written to
- Thread is reactivated when watched address is written to
- Improves power efficiency and resource utilization

Hardware Performance Counters

- Universal Performance Counter (UPC) unit collects hardware performance events from counters on:
 - 17 cores
 - L1P's
 - Wakeup Units
 - 16 L2 slices
 - Message, PCIe, and DEVBUS units
- Wide range of hardware events
- Network Unit maintains a separate set of counters
- Accessible through BGPM API

Transactional Memory and Speculative Execution

Transactional Memory implemented in L2:

- Sections of code are annotated to be executed atomically and in isolation using pragma tm_atomic
- Changes from speculative threads kept separate from main memory state
- Speculatively written data only available to thread writing it
- At end of speculative section can revert or commit changes
- Hardware identifies conflicts: read-after-write, write-after-read, write-after-write
- Can store up to 30MB of speculative state

Speculative Execution implemented in L2:

- Sections of code are annotated to be executed speculatively in parallel using pragmas: speculative for, speculative sections
- Sequential code is partitioned into tasks which are executed speculatively in parallel
- Data written by sequentially earlier threads is forwarded to later threads
- Conflicts are detected by hardware at 8 bytes resolution

Questions?